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SECTION-A

Answer ALL questions:







(10 x 2=20 marks)

1. State principle of induction.

2. Show that the set Z is similar to N.

3. Define isolated point of a set in a metric space.

4. “Arbitrary intersection of open sets in open”  True or False. Justify your answer.

5. If {xn} is a sequence in a metricspace, show that { xn} converges to a unique point.

6. Define complete metric space and give an example of a space which is not complete.

7. When do you say that a function 
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 has a right hand derivative at 
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8. Define (i) Strictly increasing function

(ii) Strictly decreasing function

9. When do you say that a partition is a refinement of another partition? Illustrate by an example.

10. Define limit superior and limit inferior of a sequence.

SECTION-B

Answer any FIVE questions:






(5 x 8=40 marks)

11. Show that 
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is an irrational number.

12. Show that collection of all sequences whose terms are 0 and 1 is uncountable.

13. Let Y be a subspace of a metric space (X,d). Show that a subset A of Y is open in Y if an only if 
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 for some open set G in X.

14. Show that every compact subset of a metric space is complete.

15. Show that every compact set is closed and bounded in a metric space.

16. Let 
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be differentiable at c and g be a function such that 
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where I is some open interval containing the range of f. If g is differentiable at f(a), show that gof is differentiable at c and (gof)’(c)=g’(f(o).f’(c).

17. If f is of bounded variation on [a,b] and if f is also of bounded variation on [a,c] and [c,b] for 
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18. Show that 
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lim inf(an) if and only if for 
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(i) there exists a positive integer N such that 
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 and 

(ii) given any positive integer m, there exists 
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SECTION-C

Answer any TWO questions:






(2 x 20=40 marks)


19. (a) State and prove Unique factrization theorem for integers.

(b) If S is an infinite set, show that S contains a countably infinite set.

(c) Given a countable family F of sets, show that we can find a countable family G of pairwise disjoint sets such that 
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20. (a) State and prove Heine theorem.

(b) If S, T be subsets of a metric space M,


show that
(i) 
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(ii) 
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Illustrate by an example that 
[image: image18.wmf]STST

Ç¹Ç


21. (a) Let X be a compact metric space and 
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 be continuous on X.  
            Show that 
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is a compact subset of Y.
      (b) Show that 
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 on R is continuous but not uniformly continuous.
22. (a) Let f be of bounded variation on [a,b] and V be the variation of f. Show that V is continuous 
           from the right at 
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if and only if f is continuous from the right at c.

(b) 
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on [a,b] and g is strictly increasing function defined on [c,d] such that   

      g ([c,a])=[a,b]. Let h (y) = f (g (y)) and 
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      Show that  
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